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Constrained Stochastic LQC: A Tractable Approach
Dimitris Bertsimas and David B. Brown

Abstract—Despite the celebrated success of dynamic program-
ming for optimizing quadratic cost functions over linear systems,
such an approach is limited by its inability to tractably deal with
even simple constraints. In this paper, we present an alternative
approach based on results from robust optimization to solve the
stochastic linear-quadratic control (SLQC) problem. In the uncon-
strained case, the problem may be formulated as a semidefinite op-
timization problem (SDP). We show that we can reduce this SDP
to optimization of a convex function over a scalar variable followed
by matrix multiplication in the current state, thus yielding an ap-
proach that is amenable to closed-loop control and analogous to
the Riccati equation in our framework. We also consider a tight,
second-order cone (SOCP) approximation to the SDP that can be
solved much more efficiently when the problem has additional con-
straints. Both the SDP and SOCP are tractable in the presence
of control and state space constraints; moreover, compared to the
Riccati approach, they provide much greater control over the sto-
chastic behavior of the cost function when the noise in the system
is distributed normally.

Index Terms—Control with constraints, linear-quadratic con-
trol, robust optimization, semidefinite optimization.

I. INTRODUCTION

THE theory of dynamic programming, while conceptually
elegant, is computationally impractical for all but a few

special cases of system dynamics and cost functions. One of
the notable triumphs of dynamic programming is its success
with stochastic linear systems and quadratic cost functions
(stochastic linear-quadratic control—SLQC). It is easily shown
(e.g., [4]) in this case that the cost-to-go functions are quadratic
in the state, and therefore the resulting optimal controls are
linear in the current state. As a result, solving Bellman’s
equation in this case is tantamount to finding appropriate
gain matrices, and these gain matrices are described by the
well-known Riccati equation [19].

This success, however, has some limitations. In particular,
Bellman’s equation in the SLQC has tractability issues with
even the simplest of constraints on either the control or state
vectors. It is not difficult to find applications that demand con-
straints on the controls or state. Bertsimas and Lo [5] describe
the dynamics of an optimal share-purchasing policy for stock-
holders. The unconstrained policy based on the Riccati equa-
tion requires the investor to purchase and sell shares, which is
clearly absurd. This can be mitigated by a nonnegativity con-
straint on the control, which causes the cost-to-go function to be-
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come piecewise quadratic with an exponential number of pieces.
Thus, a very simple constraint destroys the tractability of this
approach. Much of the current literature (e.g., [17] and [18])
derives necessary conditions for optimality for simple control
constraints but does not explicitly describe solution methods.

A further drawback of the Riccati approach from dynamic
programming is that it only deals with the expected value of the
resulting cost. In many cases, we may wish to know more in-
formation about the distribution of the cost function (e.g., cases
in which we want to provide a probabilistic level of protection
guaranteeing some system performance).

In this paper, we propose an alternative approach to the SLQC
problem. Rather than attempting to solve Bellman’s equation,
we exploit relatively new results from robust optimization to
propose an alternative solution technique for SLQC. Our ap-
proach has the following advantages over the traditional dy-
namic programming approach.

1) It can tractably handle a variety of constraints on both the
control and state vectors.

2) It admits a probabilistic description of the resulting cost,
allowing us to understand and control the system cost
distribution.

3) In the unconstrained case, its complexity is not much more
than the complexity of linear feedback (i.e., the Riccati
approach). In particular, optimal policies in this case may
be computed by optimizing a convex function over a scalar,
then multiplying the initial state by appropriate matrices.

Our approach is based on techniques from robust optimization.
Although the use of convex optimization techniques is common
in the control literature (see, e.g., [7], [9], [13], and [14]), we
believe our methodology is a new one. Chen and Zhou [8] pro-
vide an elegant solution to the SLQC problem with conic control
constraints, but their solution is limited to a scalar-valued state
variable and homogeneous system dynamics. Our approach here
is more general. We emphasize that we are not proposing a so-
lution for robust control (see, e.g., [21] for a start to the vast
literature on the subject); rather, we are proposing an approach
to the SLQC with the conceptual framework of robust optimiza-
tion as a guide.

The structure of this paper is as follows. In Section II, we
present a description of the SQLC problem, as well as the cur-
rently known results from dynamic programming and a con-
ceptual description of our methodology. In addition, we pro-
vide background for the robust optimization results we will later
use. In Section III, we develop our approach for the uncon-
strained SLQC problem. This approach is based on semidefi-
nite programming (SDP) and robust quadratic programming re-
sults from Ben-Tal and Nemirovski [3]. We further show that
this SDP has a very special structure that allows us to derive a
closed-loop control law suitable for real-time applications. Un-
fortunately, in the presence of constraints, this simplification no
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longer applies, and the complexity of solving the SDP is im-
practical in a closed-loop setting. This motivates us to simplify
the SDP, which we do in Section IV. Here we use recent results
from robust conic optimization developed by Bertsimas and Sim
[6] to develop a tight SOCP approximation that is far easier to
solve. We then show in Section V how this approach admits var-
ious constraints and performance guarantees. These constraints
may be deterministic constraints on the control or probabilistic
guarantees on the state and objective function. In Section VI,
we show that a particular model for imperfect state information
fits into the framework already developed, and in Section VII,
we provide computational results. Section VIII concludes this
paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

Throughout this paper, we will work with discrete-time sto-
chastic linear systems of the form

(1)

where is a state vector, is a control vector,
and is a disturbance vector (an unknown quantity).
We assume throughout that the matrices ,

, and are known exactly.
It is desired to control the system in question in a way that

keeps the cost function

(2)

as small as possible. Here we will assume , ,
and, again, that the data , and , are known exactly.
We are also using the shorthand and to denote the entire
vector of controls and disturbances, i.e.,

(3)

(4)

Finally, our convention will be for the system to be in some
initial state . Unless otherwise stated, we assume this initial
state is also known exactly.

Note that (2) is an uncertain quantity, as it depends on the
realization of , which is unknown. Most approaches assume
is a random variable possessing some distributional properties
and proceed to minimize (2) in an expected value sense. We now
survey the traditional approach to this problem.

A. The Traditional Approach: Bellman’s Recursion

The dynamic programming approach requires a few distribu-
tional assumptions on the disturbance vectors. Typically, it is as-
sumed that the are independent, and independent of both
and . Moreover, we have , and has finite second
moment. For this derivation, we will assume ,
and for ease of notation, but the result holds more gen-
erally after some simple manipulations. Modifications of some

of the distributional assumptions (such as nonzero mean, corre-
lations) are also possible, but we do not detail them here.

The literature on this subject is vast, and the problem is well
understood. The main result is that the expected cost-to-go func-
tions defined by

(5)

are quadratic in the state . Thus, it follows that the optimal
policy is linear in the current state. In particular, one can show
(see, e.g., [4]) that the optimal control is given by

where and
are symmetric, positive semidefinite matrices computed recur-
sively. The fact that the recursion given in (5) works so well
(from a complexity standpoint) is quite particular to the case of
linear systems and quadratic costs. For more arbitrary systems
or cost functions such an approach is, in general, intractable.

A more troubling difficulty, however, is that even with the
same system and cost function, this approach explodes compu-
tationally with ostensibly simple constraints, such as .
For instance, the cost-to-go function (5) in this case becomes
piecewise quadratic with an exponential (in ) number of
pieces.

Of course, one way to suboptimally handle this issue is to
apply Lagrangian duality techniques to the constraints. For ex-
ample, in the case of quadratic constraints on the control vectors,
i.e., , one may relax the constraints and then max-
imize over a dual vector . In particular, the cost-to-go functions
now have the form

(6)

where the dual functions have the form

From here, one approach to solving (6) suboptimally is to
select a priori a dual vector and then apply the Riccati equation
as usual. An optimal solution, however, relies on computation
of the optimal dual vector , which, in general, is difficult and
destroys the quadratic form of the cost-to-go functions.

Thus, the traditional, dynamic programming approach can be
solved very rapidly with linear feedback in the unconstrained
case but becomes, for large-scale problems, impossible to solve
optimally when the constraints are included. This is a very unfa-
vorable property of the DP approach, and it is in direct contrast
to the field of convex optimization, whose problem instances
are quite robust (in terms of complexity) to perturbations in the
constraint structure. Our approach, which we now detail, will
leverage this useful property of convex optimization.
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B. A Tractable Approach: Overview

The traditional approach above is not amenable to problem
changes such as the addition of constraints for two primary
reasons.

1) Complexity of distributional calculations. Computing the
expectation in (5), except for very special cases, is cum-
bersome computationally.

2) Intractability of Bellman’s recursion. The recursion in (5)
requires us, when computing the current control, to have
advance knowledge of all future controls for all possible
future states, even states that are extraordinarily improb-
able. While this recursion is an elegant idea conceptually,
it is not well suited to computation because the number of
possible future states grows so rapidly with problem size.

We propose the following approach, which circumvents these
difficulties.

a) Given our current state and problem data, we
consider the entire control and disturbance vectors

, respectively, as in (3) and (4).
b) We do not assume a particular distribution for . As-

sume only that belongs within some “reasonable” un-
certainty set. In particular, assume belongs to some
norm-bounded set

(7)

parameterized by .1

c) Discard the notion of Bellman’s recursion. Instead, do
the best we can for all possible disturbances within .
That is, rather than computing controls for every possible
state realization, we simply choose a control vector for
the remaining stages that performs best for the most pes-
simistic disturbance within this “reasonable” uncertainty
set. Specifically, we search for an optimal control to
the problem

(8)

Of course, this brings up the issue of open-loop versus closed-
loop control. At first glance, this approach appears to be an
open-loop method only. We can, however, compute a solution

to (8), take the first components, and apply this as the
current control. After a new state observation, we can repeat the
calculation in (8) with the updated problem data (most of this
updating can be done offline). The only issue is that the routine
for solving (8) be computationally simple enough for the appli-
cation at hand. The complexity of these solution procedures will
indeed be a central issue for much of the remaining discussion.

Note that the model in (8) is similar in spirit to the approach
of control (e.g., [2]) in that it is worst case over a determin-
istic uncertainty set. In contrast to control, however, our
methodology explicitly relies on new results in robust optimiza-
tion. In particular, our approach has the following properties.

1If we wish instead to have www 2 fwwwjwww � www � 
 g, where � � 0,
then we may rescale coordinates and obtain a problem of the same form. Note
that the statistical appropriateness of ellipsoids and their explicit construction is
not the subject of this paper, but the interested reader may see Paganini [11] for
uncertainty set modelling for the case of white noise.

• It is tractable, even in the presence of control and state-
space constraints.

• We solve a deterministic problem (8) to compute an op-
timal solution . Thus far, we have not discussed proba-
bility in any way. Nonetheless, our approach is amenable
to examining how good is when the disturbances ,
rather being chosen in an adversarial manner from an el-
lipsoid, instead obey a probability distribution. We show in
Theorem 8 that under normality for , the solution sat-
isfies very strong probabilistic guarantees. In other words,
when nature gives rise to disturbances that are bounded, we
solve the problem optimally. When, on the other hand, na-
ture gives rise to disturbances that do not satisfy ,
we still show strong probabilistic guarantees on the perfor-
mance of .

• In the unconstrained case, it yields an efficient control law
that is linear in the current state after a simple, scalar opti-
mization procedure. In addition, for , we recover the
traditional (Riccati) solution, whereas, for , we have
a family of increasingly conservative approaches.

To solve (8), we will utilize a number of results from robust
optimization, which we now describe.

C. Results From Robust Quadratic Optimization Over
Ellipsoids

We will leverage some robust quadratic programming results
popularized by Ben-Tal and Nemirovski [3]. In particular, they
consider the conic quadratic constraint

when the data are uncertain and known only to be-
long to some bounded uncertainty set . The goal of robust
quadratic programming is to optimize over the set of all such
that the constraint holds for all possible values of the data within
the set . In other words, we desire to find such that

Ben-Tal and Nemirovski show that in the case of an ellipsoidal
uncertainty set, the problem of optimizing over an uncertain
conic quadratic inequality may be solved tractably using
semidefinite programming. This turns out also to be the case
for (8). To this end, we will need the following two classical
results, proofs of which may be found in [3], among others.
First, we have the Schur complement lemma.

Lemma 1: Let

where . Then is positive (semi) definite if and only if
the matrix is positive (semi) definite.

In addition, we have the -lemma.
Lemma 2: Let be symmetric matrices and assume

that the quadratic inequality
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is strictly feasible. Then the minimum value of the problem

minimize

subject to

is nonnegative if and only if there exists a such that
.

D. Results From Robust Conic Optimization Over
Norm-Bounded Sets

To improve the complexity of solving (8) when we have con-
straints, we will utilize recent results from robust conic opti-
mization results due to Bertsimas and Sim [6]. This approach
is a relaxation of the exact min-max approach but is computa-
tionally less complex and leads to a unified probability bound
across a variety of conic optimization problems. We survey the
main ideas and developments here.

Bertsimas and Sim use the following model for data
uncertainty:

where is the nominal data value and are data perturba-
tions. The are random variables with mean zero and indepen-
dent, identical distributions. The goal is to find a policy such
that a given constraint is “robust feasible,” i.e.,

(9)

where

(10)

For our purposes, we typically use the Euclidean norm on ,
as it is self-dual, but many other choices for the norm may be
tractably used [6]. We operate under some restrictions on the
function .2

Assumption 1: The function satisfies the following.
a) is convex in for all .
b) for all .

One of the central ideas of [6] is to linearize the model of ro-
bustness as follows:

(11)

where

2In [6], the authors assume the function is concave in the data. For our pur-
poses, convexity is more convenient. All results follow up to sign changes, and
we report them accordingly.

In the framework developed thus far, (11) turns out to be a re-
laxation of (9), i.e., we have the following.

Proposition 1 (Bertsimas–Sim):
a) If , then satisfies (11)

if and only if satisfies (9).
b) Under Assumption 1, if is feasible in (11), then is

feasible in (9).
Finally, (11) is tractable due to the following.

Theorem 1 (Bertsimas–Sim): Under Assumption 1, we have
the following.

a) Constraint (11) is equivalent to

(12)

where

b) Equation (12) can be written as

(13)

Finally, Bertsimas and Sim derive a probability of constraint
violation.

Theorem 2 (Bertsimas–Sim): In the model of uncertainty in
(10), when we use the -norm, i.e., , and under the
assumption that , we have the probability bound

where for linear programs (LPs), for SOCPs,
and for SDPs ( is the dimension of the matrix in the
SDP).

III. AN EXACT APPROACH USING SDP

In this section, we apply the robust quadratic optimization
results to formulate (8) as an SDP. We then show that we can
compute optimal solutions to this SDP with a very simple con-
trol law.

First, exploiting the linearity of the system, we have the fol-
lowing, straightforward result.

Proposition 2: The cost function (2) for (1) can be written in
the form

(14)

for appropriate vectors
and matrices

,
and where .
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Proof: Since the system is linear, we can write the state at
any instant as

where

Now the cost of any state term is written

Thus, the overall cost is clearly written in the form stated above,
with

where

diag

Finally, positive (semi) definiteness of and follow from
positive (semi) definiteness of and .

Next, for ease of notation, we will transform the coordinates
of the control space.

Proposition 3: To minimize the cost function in
Proposition 2 over all , it is sufficient instead to
optimize over all the cost function

(15)

with .
Proof: The proof is immediate from the fact that

exists since , and then using the transformation
.

By Proposition 3, then, (8) is equivalent to the problem

(16)

This problem may be solved using SDP, as we now show.
Theorem 3: Problem (16) may be solved by the following

SDP:
minimize

subject to

(17)

in decision variables , and .
Proof: We first rewrite the problem as

minimize

subject to

(18)

We may homogenize the system and rewrite this equivalently as

minimize

subject to

(19)

Clearly, feasibility of in (19) implies feasibility of
in (18) (by setting ). For the other direction, assume
is feasible in (18) and set , where . This
implies , and

where the inequality follows by (18). Thus, the claim is true.
But now we wish to check whether a homogenous quadratic

form in is nonnegative over all satisfying another
quadratic form. Invoking Lemma 2, we know the constraint
holds if and only if there exists a such that
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Finally, utilizing Lemma 1 with , we see that this is
equivalent to

Thus we arrive at the desired SDP.
There is a tie between the standard DP approach (the Riccati

equation) and this SDP, and the connection is not difficult to see.
Corollary 1: With , the optimal solution to SDP (17)

solves the Riccati equation, i.e., minimizes the cost-to-go in an
expected value sense.

Proof: As argued in Proposition 2, the total cost can be
written in the form

With , we require . Hence, we have

where . Since the goal of the dynamic program-
ming approach is to minimize the expected cost, the equivalence
of the two approaches in this case follows.

In summary, Theorem 3 provides an exact SDP approach to-
wards solving (16), and in the limiting case , this SDP
yields the same solution as the Riccati equation. It is not sur-
prising that the complexity of the problem is that of solving an
SDP; in fact, Yao et al. [20] have shown that solving the Riccati
equation can be cast as an SDP.

A. Simplifying the SDP for Closed-Loop Control

Although Theorem 3 ostensibly provides us with an open-
loop policy, we can certainly run this approach in closed loop.
We would do this by solving (17) and applying the first com-
ponents of the solution as the current control. Then, with a new
state observation, we update the data to (17) (in fact, only de-
pends on the current state, so all other data for the problem can
be computed offline) and solve (17) again.

For large problem sizes and applications demanding rapid
feedback, however, this approach is clearly impractical. In par-
ticular, solving large SDPs of the form of (17) is expensive for
large problem sizes, and this a serious drawback in real-time
control settings. We would like a simplification that allows us
to compute solutions much faster.

In this section, we show that (17) has a very special structure
that allows us to dramatically reduce the problem complexity.
We will show how to compute optimal policies with only linear
operations (i.e., matrix multiplication) in the current state plus
a very simple optimization of a convex function over a scalar
variable. In short, we will derive for our approach a control law
that is an analog of the linear control law (Riccati) in the dis-
tributional framework. This control law, while nonlinear in the
current state, can nonetheless be computed extremely efficiently
and thus may be used very efficiently in closed-loop control.

To begin, we need the following simple observation.
Lemma 3: Consider matrices , and , of appropriate

size, and let and be the orthogonal complements of
and , respectively (i.e., full-rank matrices such that

). If there exists a matrix such that

then the following hold:

(20)

(21)

Proof: Clear by multiplying (20) and (21) by and

, respectively.
Lemma 3 is actually a special case of an “elimination lemma.”

The statement is in fact true in both directions when the inequal-
ities are all made strict [7]. We can now apply Lemma 3 to sim-
plify (17). From here on out, we use the notation as the
spectral norm of a positive semidefinite matrix , i.e.,

where are the eigenvalues of .
Proposition 4: Let be the optimal value of (17). Then
, where is the optimal value of the problem

minimize

subject to

(22)

in decision variables .
Proof: Applying Lemma 3 to the constraint in (17), we see

that we can write it in the form

where

We now invoke Lemma 3 with

where all zero matrices are sized appropriately. With these
choices, if there exists a such that (17) is feasible for a given
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, then the following inequalities also hold for such a
:

and, by Schur complements, the latter inequality is equivalent
to , since . It follows that
any that is feasible to (17) is feasible to (22), and hence

.
Before analyzing the structure of (22) in more detail, we note

the following definition, which we will employ for notational
convenience.

Definition 1: Consider a matrix such that with
eigenvalue decomposition written as . Denote by

the unit full-rank version of , with

(23)

where is a diagonal matrix such that

if
otherwise

Note that always, so always exists; and that if
, then .

We now show that (22) can be reduced to a simpler optimiza-
tion problem involving no semidefinite constraints and just the
variable . In what follows, we will denote the eigenvalues and
eigenvectors of by and ,
respectively.

Proposition 5: Problem (22) is equivalent to the convex op-
timization problem (in single variable )

minimize

subject to (24)

where

if
otherwise

(25)

where and .
Proof: By Schur complements, a pair is feasible in

(22) if and only if

where is the optimal value of the problem

maximize

subject to

Note that feasibility of implies that for all .
Let . Then carrying out the above
optimization problem, we find

if

otherwise

if
otherwise

From the above equivalences, then, we have feasible to
(22) if and only if

Since we wish to minimize , for a fixed , we should set equal
to . Thus (22) is equivalent to minimization
of over all .

We now argue that optimization of may be done
efficiently.

Proposition 6: The function in (25) satisfies the
following.

a) is convex on .
b) If , where

if
otherwise

then minimizes over all .
c) If , then the minimizer of over all

may be found (within tolerance ) in time
, where

(26)

, the columns of are the
eigenvectors of and is the number
of eigenvectors such that .

Proof:
a) We may write as

which is clearly a convex function in over
.

b) If , we have, for all

so is nondecreasing over .
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c) If , then we must search for such
that [since, by a), is convex]. This is
the same as finding a root of the nonlinear
equation

(27)

We claim , where

Indeed, assume . Then

which implies that cannot be a solution of (27). The
result then follows by applying bisection (with tolerance
) on the interval .

We are finally ready for the main result of this section. Given
an optimal solution to (24), we can then compute our closed-
loop optimal simply by performing matrix multiplications.

Theorem 4: Let be the optimal solution to (24). Then the
solution , where

(28)

is an optimal solution to the SDP (17).
Proof: By Proposition 4, we know that , and by

Proposition 5, we have , so if we can just show
that the solution in (28) is feasible to (17), then we
know it must be optimal. First, since , we have

, as required. For the semidefinite constraint in (17), by
Schur complements, we require

As before, let ; note that feasibility
of in (24) implies , so

for some matrix . Finally, minimizes
over all , so must be finite and thus

. Putting all of this together, we
have

where

, and the second-to-last

equality follows by factoring from these two ma-
trices. This completes the proof.

We reiterate that Theorem 4 provides us with a control vector
for all remaining stages. When we run this in closed

loop, however, we would just take the first components and
apply that as the control to the current stage.

Thus, we see that the optimal, closed-loop control law for the
approach given by (16) may be computed in the following way:
first, by computing the optimal value (which may be done by
bisection, via Proposition 6), then by matrix multiplication. The
only datum in the SDP (17) that depends on the current state
is the vector . Thus, much of the work may be done offline. We
now quantify explicitly the online computational burden.

Corollary 2: Consider the problem setup from (17), with
the number of stages and and the sizes of the

state, control, and disturbance vectors, respectively. Then the
optimal closed-loop policy for a single period may be computed
in time, where is given in (26).

Proof: Since we only care about the current control, and
is linear in the current state , we may write reexpress the

closed-loop control for the current optimal control as

where , and
. Of course, since , we

may compute an eigenvalue decomposition for
offline, and computing the inverse of may be done
simply by adding to the diagonal elements of . Our total
computational burden breaks down as follows:

• iterations for setting up the optimization of
(i.e., computing );

• bisection calls, each requiring a sum over
terms, for a total effort of searching for ;



1834 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 10, OCTOBER 2007

TABLE I
COMPUTATIONAL EFFORT (SECONDS) FOR VARIOUS PROBLEM SIZES ON A

1 GHZ MACHINE. HERE, � � 10 AND n � n � n ARE ASSUMED

• right-matrix multiplication of the current state:
;

• scaling the resulting vector componentwise by :
;

• left-matrix multiplication to obtain optimal control:
.

The total effort required is thus

We note that the computational effort, for all other in-
puts fixed, grows linearly with the number of stages . Of
course, by computing the matrices offline, we are reducing
the computational effort by increasing storage requirements.
Our total memory usage is to store matrices of sizes

and , for a total memory requirement of
. Hence, memory increases quadratically

with the time horizon .
Table I illustrates order-of-magnitude estimates for the com-

putational time for various problem sizes.

IV. AN INNER APPROXIMATION USING SOCP

In the presence of constraints, we cannot use the simplifica-
tion results of Section III-A. This means for constrained control
with feedback, we would need to solve a problem of the same
form as (17) with constraints at each stage. For large problems
and applications demanding fast decisions, this will not be fea-
sible. This motivates us to find a simplification of the exact SDP
in (17).

Here we will develop an inner approximation using SOCP
[i.e., any feasible solution to the SOCP will be feasible to SDP
(17)]. We will exploit the robust conic optimization results high-
lighted in Section II-D.

Recall that our cost-to-go can be written as

As before, we would like to find the policy , which minimizes
the maximum value of over all in some
ellipsoidal uncertainty set. We may write this problem as

minimize

subject to (29)

where . Our uncertainty
model is

(30)

where is any orthonormal basis of .
Note that is precisely the same uncertainty set utilized
in Section III, with assuming an analogous role as . In
the framework of Section II-D, we are using the assignments

, and .
From here, we would like to directly apply the results from

Section II-D. The difficulty, however, is that the quadratic term
causes to violate Assumption 1b). We remove

this difficulty with a slight relaxation of (29).
Proposition 7: Consider the problem

minimize

subject to

(31)

where and is as described in
(30). We then have the following.

a) If a solution is feasible in (31), then it is also feasible
in (29).

b) The function satisfies Assumption 1.
Proof:

a) Let be feasible in (31), and consider any .
Then we have

(32)

(33)

where (32) follows from the fact that

and (33) follows from feasibility of in (31). Thus,
is also feasible in the original formulation in (29).

b) This follows trivially, since is linear in .
Now that we have cast the problem in the framework of

Section II-D, we may apply the corresponding results. This
leads us to our formulation of (29) as a second-order cone
problem, as we now illustrate.

Theorem 5: Consider the SOCP

minimize

subject to

(34)
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in decision variables . If are part of a feasible
solution to (34), then are also feasible in (29).

Proof: From Theorem 1, (34) is equivalent to

minimize

subject to

where

Now, since is linear in , this problem is equivalent to
(31), by Proposition 1a). Finally, invoking Proposition 7a), we
have that feasibility of in (31) implies feasibility in (29),
and thus we are done.

Theorem 5 thus gives us an inner approximation to the exact
problem given in (29). This is in contrast to Theorem 3, which
solves the problem exactly using SDP (and, in the unconstrained
case, can be simplified via the results in Section III-A). Theorem
5 gives us an SOCP formulation, which is a significant reduc-
tion in complexity from the SDP. In addition, we expect this
approximation to be quite tight, as the only inequality we have
exploited is , which holds for all .
We now quantify this difference.

Corollary 3: Let and be the optimal values of
the SDP and SOCP (with ) given in Theorems 3 and 5,
respectively. Then we have

(35)

Proof: Note that we have

where the inequality follows from feasibility of . On the
other hand, positive semidefiniteness of the matrix in Theorem
3 requires

where the last line follows from Lemma 2. The result in (35)
now follows.

V. CONSTRAINTS AND PERFORMANCE GUARANTEES

We now demonstrate the modelling power of the approaches
developed in Theorems 3 and 5. In particular, we show that both
approaches readily lend themselves towards handling a wide va-
riety of constraints. These constraints fit into three categories:

control constraints, probabilistic guarantees on the state, and
probabilistic guarantees on the cost function. For the proba-
bilistic guarantees, we will assume the disturbances are inde-
pendently and normally distributed.

The model for uncertainty proposed in Section III is de-
terministic and relies on a norm-bounded disturbance vector.
While it is true that this model does not seem, at first glance, to
apply to random variables which are unbounded, the purpose
of the probability results within this section is to show that the
optimal solutions based our uncertainty model do in fact have
reasonable performance guarantees even when the underlying
disturbance vectors obey a different uncertainty model, namely,
one admitting a probabilistic description. In particular, we
utilize the normal distribution because of its analytical conve-
nience and prevalence throughout much of the control literature.
Thus, even though our original model utilizes a bounded uncer-
tainty model, the resulting solutions still perform well under a
stochastic model with unbounded disturbance vectors. This is
the underlying thrust for the probability results of this section.

We present the results here for both the SDP and SOCP frame-
works. Since the presence of constraints destroys the simple
control law for the SDP from Section III-A, however, the SOCP
is more viable in a constrained, closed-loop control setting (in
fact, we reiterate that this was the primary motivation for the
development of the SOCP approach).

Throughout this section, we will make claims about the “com-
plexity type” of the problem being unchanged. By this, we mean
the SDP remains an SDP and the SOCP remains an SOCP. We
implicitly appeal to the fact that the class of SDP problems
includes the class of SOCP problems, and thus we may add
second-order cone constraints to an SDP without increasing its
complexity type.

We turn first to the simplest case of control constraints.

A. Control Constraints

We will show that both approaches may handle any convex
quadratic constraint on the control vector. In this and the fol-
lowing section, we temporarily revert to the traditional notation

for the controls and note that the simple affine transformation
listed in Proposition 3 allows us to implement these constraints
in our control space. We first need the following well-known
result.

Proposition 8: The quadratic constraint is equiva-
lent to the second-order cone constraint

Proof: This is a standard result (see, e.g., [3]) that follows
by noting that .

We now have the rather straightforward result of this section.
Theorem 6: Any control constraints of the form

(36)

where , and may be
suitably added to (17) and (34) without increasing their respec-
tive complexity types.
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Proof: By Proposition 8, we may write (36) as

which is a second-order cone constraint and hence may be added
to either problem without raising the complexity type.

Note that Theorem 6 implies we can tractably deal with any
polyhedral or ellipsoidal constraints on the control.

B. Probabilistic State Guarantees

Since the state of the system is not exactly known, any con-
straints on can only be enforced in a probabilistic sense. To
ensure probabilistic guarantees in what follows, we will operate
under the typical assumption that the disturbances are inde-
pendently and normally distributed.3

Assumption 2: The disturbances are independently and
normally distributed with zero mean, i.e.,

Note that, if instead we have , where ,
we may simply rotate coordinates and multiply the matrices
in the dynamics in (1) accordingly.

We now show how to explicitly ensure that linear constraints
on the state will hold with a desirably high probability. The no-
tations and stand for the cumulative distribution functions
of standard normal and -degree chi-squared variables, respec-
tively, and the notation will represent the Euclidean norm
induced under the matrix , i.e., .

Theorem 7: Consider a linear system described by (1), with
the state written as

for appropriate matrices , and . Then under Assumption
2, we have the following.

a) The constraint

(37)

where
implies the following guarantee:

(38)

b) The constraint

(39)

where implies the fol-
lowing guarantee:

(40)

where .

3Of course, other distributional assumptions may be made; we present the
normality assumption primarily because a) it provides the cleanest analytical
results and b) it is the most common assumption in the literature.

Proof:
a) We have

and the result follows by setting this less than or equal to
and inverting .

b) We have

and, again, the result follows by setting this less than or
equal to and inverting .

Both parts of Theorem 7 are constraints that can be added
to either the SDP or SOCP approaches without increasing their
respective complexity types. Note that the constraint in part a)
of the theorem is exact, while the constraint in b) is somewhat
conservative. Care must be taken to ensure that and do not
result in a constraint that forces the problem to be infeasible.

C. Probabilistic Performance Guarantees

In this section, we analyze the probability distribution of the
cost-to-go function. We first derive a bound on the performance
distribution of the cost-to-go function for a given control policy

under Assumption 2, then describe the protection guarantees
and expected losses for both (17) and (34). Finally, we show
how to probabilistically ensure certain levels of performance.

We emphasize that the results proven here in terms of per-
formance guarantees are for open-loop control. In general,
analyzing our approach in a feedback context seems difficult.
Instead, we will study the closed-loop performance computa-
tionally in the Section VII.

For a given policy , the cost function is a random variable (a
function of the random disturbances)

For our results in this section, we need a slightly stronger
assumption.

Assumption 3: In addition to Assumption 2, we have .
We see that under Assumption 3, we have

with , where are the eigenvalues of .
We now derive a key result; the proof is quite similar to a proof
from [6].



BERTSIMAS AND BROWN: CONSTRAINED STOCHASTIC LQC: A TRACTABLE APPROACH 1837

Proposition 9: Under Assumption 3, we have

(41)

where

(42)

(43)

(44)

Proof: Let , be the eigenvalues of
, and be its eigenvalue decomposition. We then

have

where we employ the transformations
and we have , independent. Finally,

for notational convenience. Continuing,
we have

where we require , and . The first
line above follows from the Markov inequality, the second fol-
lows from independence of the , and the last line follows from
Jensen’s inequality. Now noting that under ,
we have

we have, after some rearranging with

Finally, we set and the result follows.
Note that the bound in (41) is for any policy , and we have

in no way imposed the structure of either of the approaches de-
veloped in Sections III or IV. Now utilizing the structure of the
SDP and the SOCP, we may quantify more precisely what we
gain in terms of performance protection with both approaches.
This protection comes at the price of some degradation of ex-
pected performance, and we also quantify this decrease.

Theorem 8: Under Assumption 3, and with
the expected value of the Riccati approach, we have the
following.

a) If are feasible in SDP (17), then the ex-
pected performance loss is bounded as

(45)

while we gain the following level of probabilistic protec-
tion:

(46)

where

b) If are feasible in SOCP (34), then the
expected performance loss is bounded as

(47)

while we gain the following level of probabilistic
protection:

(48)
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Proof:
a) For the expected loss from the Riccati approach, note that

the optimal Riccati solution, from Corollary 1, is ,
and that the expected performance of any policy is just
given by

Therefore, noting that feasibility of in SDP
(17) requires , we have

The first line follows from feasibility of as
stated above; the next line follows from the definition of

; the next line follows by noting that is fea-
sible in the SDP; and the second-to-last line follows by
bounding the maximum value of the given function over
all .
For the probabilistic guarantee of (46), we note, from
Proposition 9 and feasibility of that

Now, we have

where we have repeatedly used matrix norm bounds and
the Schwartz inequality, and, in the last line, utilized the
bound for derived in the expected loss above.
The result now follows.

b) The expected loss for the SOCP follows exactly analo-
gously to the proof for the expected loss for the SDP in a)
by noting that feasibility of in the SOCP
implies feasibility in the SDP (Proposition 7), replacing
with , and then noting the result of Corollary 3 (namely,

). The probabilistic bound fol-
lows by directly applying Theorem 2.

Theorem 8 quantifies the expected loss and a probabilistic
protection level for both approaches. Note that the expected loss
from the Riccati equation can be bounded by a quantity linear in
the size of the uncertainty set ( or ). Moreover, the protection
level bounds are both of a similar nature ( and

).
In addition to simply describing performance, we may also

want to explicitly protect against certain threshold performance
levels. We now show how to do this.

Theorem 9: Under Assumption 3, the convex quadratic
constraint

(49)

where

(50)

(51)

(52)

implies the following guarantee:

(53)

Proof: The proof follows directly from Proposition 9 in
straightforward fashion, noting the implications

where , and are defined in (50)–(52). Positive definiteness
of follows from positive definiteness of and , and thus the
constraint is a convex quadratic constraint.

We see that (49) is a convex quadratic constraint and hence
may be added (in the same manner as in the proof of Theorem
6) to either approach without increasing their respective com-
plexity types. Note that we may only ensure against appreciably
high levels of cost. In fact, a simple necessary (but not sufficient)
condition to retain feasibility of the problem is the requirement

VI. IMPERFECT STATE INFORMATION

In some cases, we may not know the state of the system
exactly. Rather, we may only have an estimate of the cur-
rent state. In standard dynamic programming texts (see [4]), it
is shown that in the case where noise-corrupted state observa-
tions of the form
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are available, with known matrices and additive noise
with finite second moment, then the resulting optimal policy
is a modified Riccati equation. Here, we assume the following
model for the state estimate :

(54)

where is a noise term with some distribution. We will show
that the form of the cost-to-go function is unchanged by the
added uncertainty in the state by now viewing the disturbances
as . As a consequence, we can apply either
of the robust approaches to the problem with imperfect state
information of the form given in (54).

Proposition 10: With noisy estimates of the state given by
(54), the cost-to-go can be written in the form

(55)

where , and are as in Proposition 2, is as in Proposition
2 with replacing , and

Furthermore, the matrix is positive semidefinite.
Proof: The proof follows by recalling the original, perfect

state cost form of

(14). Simply substituting and collecting terms, (55)
follows. To see that , note, using the original definitions
of and , we have

where the last line follows, since it is a sum of similarity trans-
formations of positive definite matrices .

VII. COMPUTATIONAL RESULTS

We have written routines for solving the control law of
Section III-A as well as SOCP (34) in Section IV. The routines

TABLE II
AVERAGE RELATIVE COST INCREASE [SDP (UPPER), SOCP (MIDDLE)]

AND STABILITY INCREASE [SDP (LOWER)] ALL VERSUS RICCATI

FOR VARIOUS 
 AND DISTURBANCE DISTRIBUTIONS

have been implemented in a Matlab environment and the
SeDuMi [16] package has been used for the underlying opti-
mization problems. In this section, we explore computationally
the performance of our approach in closed-loop control in a
variety of ways.

A. Performance in the Unconstrained Case

Here we compare the performance of the optimal policy in
Theorem 4 to that given by the Riccati equation for a problem
without constraints. We considered a simple, ten-stage problem
with time-invariant state, control, and disturbance matrices

, and , initial state . The cost function
was given by , and for
all .

We ran 1000 trials of the closed-loop policies for the Riccati
approach and the control law of Theorem 4 and tabulated the
average percentage increase in cost (over Riccati) for various
values of . Disturbances vectors were generated at each iter-
ation by , where is a parameter we varied. Table II
lists the results.

We observe the following from these computational results.
1) For small, this approach does not result in a marked in-

crease in expected cost.
2) For beyond a certain value, the expected cost increase

does not change. This is not surprising, since for large
enough, we have [Proposition 6b)] at each it-
eration. In this case, there will be no change in the policy
given by Theorem 4 for further increases in , so the per-
formance, on average, will not change.

3) The policies given by Theorem 4 are more conservative
than the traditional, Riccati approach. As such, the distri-
bution in the cost is more stable for larger . Here, we mea-
sure stability in terms of the standard deviation of the first
upper tail moment. Specifically, if we denote the cost dis-
tribution under a control policy by the random variable

, then the stability results reported are

Stability
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We chose the upper tail moment because downside vari-
ability in the cost is potentially beneficial. The policies
given by Theorem 4 give, for the most part, significantly
more stable policies than the Riccati policy. Thus, by
varying , there is a tradeoff between expected value of
the cost and variability of the cost.

4) Although we only report results for a stage
problem here, the results are similar for other dimensions
and other problem instances.

B. SOCP Performance in the Unconstrained Case

The SOCP approach from Section IV has been developed for
use in the constrained case (i.e., when we cannot use the control
law given in Theorem 4). As it is an approximation to SDP (17),
however, it is relevant to examine how good this approximation
is when we have no constraints. We ran 100 trials of the problem
instance from the previous section and compared the perfor-
mance of SOCP (34) to the control law in Theorem 4, with both
approaches run closed-loop. The results are shown in Table II,
again versus and under various disturbance distributions.

Note that the shape of the expected cost increase for SOCP
(34) versus is essentially the same as that for the control law
of Theorem 4, just with a higher asymptote for large . For

, however, the performance of the SOCP approximation
is essentially indistinguishable from that of the control law in
Theorem 4.

C. Effect of Constraints on Runtime

Here we present resulting run times for various values of
for a problem with

, and . For all
trials we use . The machine is running Linux on a 2.2 GHz
processor with 1.0 GB RAM. The results are listed in Table III.
Note that in this case we are solving the problem in open loop.
We note the following.

1) The presence of any of the constraints listed does not result
in marked increases in run time for fixed .

2) For the objective guarantee, we use for
and for all other . In the unconstrained case, we
can only guarantee that ,
where is the optimal policy in that case. As we can see,
however, without significant increase in expected cost we
are able to ensure that this bad event occurs with proba-
bility no greater than .

3) The constraints result in very large increases in
expected cost. This is merely due to the fact that it is a very
restrictive restraint and not a drawback of the proposed
approaches.

4) Although we do not report the run-times here, we ran this
simulation for the SDP with the listed constraints as well.
Typically this runs longer than the SOCP, solidi-
fying our assertion that the SOCP is much more suitable
to efficient, closed-loop control.

D. Performance on a Problem With Constraints

Here we compared the performance of SOCP (34) versus
the optimal policy for a five-stage problem with the constraints

for . The problem data were

TABLE III
RUN-TIME IN SECONDS AND COST INCREASE FROM UNCONSTRAINED

FOR THE SOCP APPROACH WITH VARIOUS CONSTRAINTS

TABLE IV
AVERAGE RELATIVE COST INCREASE FOR SOCP VERSUS RICCATI

FOR VARIOUS 
 AND DISCOUNT FACTORS

, and for , initial state
. The cost function was given by ,

and , for all . Here, is a
discounting factor that we varied in the simulations. Note that
smaller implies that the cost associated with later stages is less
important. We compared this to the optimal control law (com-
puted with enumeration over a grid approximation) when the
disturbances satisfy . The results are illustrated
in Table IV, and we note the following.

1) The form of the increase in expected relative cost is very
similar to the unconstrained case. In particular, for ,
there is very little degradation in performance from the
optimal policy. For large enough , the performance ap-
proaches an upper limit (in the range 20–40% in this case)
and does not go beyond that.

2) The performance loss is better for smaller . This makes
intuitive sense, as our approach does not exactly capture
the tradeoff between current costs and future costs. When

is smaller, then, future costs are less relevant and SOCP
(34), which is myopic, will perform better.

3) For , we see that our approach appears to outperform
the optimal policy for small . This can be attributed due
to small error in computing the optimal policy due to the
discrete grid approximation.

VIII. CONCLUSION

A primary open question of interest is how to simplify this
approach even further in the presence of constraints. The best we
have here is to solve an SOCP at each step. From Section VII,
we see how the complexity of this problem grows faster than
linearly with the size of the problem. For large enough problems,
solving this in closed loop will become overly burdensome. It
remains to be seen if the constrained SOCP has a structure that
can be simplified for more efficient computations.
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